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At Tantan we use PostgreSQL & 
PostGIS for everything!

2tantanapp.com



Suggesting users is difficult

• How should we rank them?

• How can it execute quickly?
(At Tantan we need to do 1000 ranking queries per 
second at peak!)
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The exciting new feature in 
PostGIS is this:

<<->>
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Today I will show how to take 
advantage of the 4th dimension!
1. Use double the amount of dimensions from 2

2. …

3. Profit!
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We will look at 3 different properties 
to help our suggestion SELECT

1. Popularity

2. Age 

3. Activity
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Let’s begin with 2 dimensions
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Table and index

CREATE TABLE users (

id serial PRIMARY KEY,

birthdate date,

location geometry,

active_time timestamp,

popularity double precision

);

CREATE INDEX users_location_gix

ON users USING GIST (location);
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Selecting

SELECT * FROM users 

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

/* Singapore */

LIMIT 10;
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Lets look at our first case

1. Popularity <--

2. Age 

3. Activity
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The popularity formula

Popularity = likes / (likes + dislikes)
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Order by location and popularity

WITH x AS (SELECT * FROM users

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 100)

SELECT * FROM x 

ORDER BY 

ST_Distance(location::geography, ST_MakePoint(103.8, 1.3)) 

* 1 / (popularity+1)

LIMIT 10;
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Picture of x-y-z axis
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Adding a 3rd dimension!

ALTER TABLE users ADD COLUMN loc_pop geometry;

UPDATE users

SET loc_pop = ST_makepoint(ST_X(location), 

ST_Y(location), 0.01 * 1 / (popularity+1));

CREATE INDEX users_loc_pop_gix

ON users USING GIST (loc_pop gist_geometry_ops_nd);
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To use our new 3D index we need 
to use the new <<->> operator

<<->> — Returns the n-D distance between the centroids 
of A and B bounding boxes.

This operand will make use of n-D GiST indexes that may 
be available on the geometries. It is different from other 
operators that use spatial indexes in that the spatial 
index is only used when the operator is in the ORDER BY 
clause.

* http://postgis.net/docs/manual-2.2/geometry_distance_centroid_nd.html
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With <<->> our query becomes

SELECT * FROM users 

ORDER BY loc_pop <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;
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Second case

1. Popularity

2. Age <--

3. Activity
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A quick review of our table:

CREATE TABLE users (

id serial PRIMARY KEY,

birthdate date,

location geometry,

active_time timestamp,

popularity double precision

);
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Selecting with age filter

SELECT * FROM users 

WHERE age(birthdate) between '20 years' AND '30 years'

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 10;
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A very selective user might only 
want to look at 74 year olds
SELECT * FROM users 

WHERE age(birthdate) between '74 years' AND '75 years'

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 10;
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Explain analyze of the query

Limit  (cost=0.41..62011.93 rows=10 width=96) (actual 
time=49.456..551.955 rows=10 loops=1)

->  Index Scan using users_location_gix on users  
(cost=0.41..1103805.51 rows=178 width=96) (actual time=49.398..546.631 
rows=10 loops=1)

Order By: (location <-> 'XXX'::geometry)

Filter: ((birthdate >= (now() - '75 years'::interval)) AND (birthdate <= 
(now() - '74 years'::interval)))

Rows Removed by Filter: 192609

Planning time: 0.157 ms

Execution time: 553.151 ms
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This is a real 
problem
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Possible solutions? 

• Prevent searches of 
restricted ages

• Add a distance 
restriction

• Add age to the geo index
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Adding age to the geo index

ALTER TABLE users ADD COLUMN loc_age geometry;

UPDATE users

SET loc_age = ST_makepoint(ST_X(location), ST_Y(location), 
Extract('year' FROM birthdate)/100000);

CREATE INDEX users_loc_age_gix ON users USING GIST (loc_age
gist_geometry_ops_nd); 
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Updated query

SELECT * FROM users 

WHERE loc_age &&&

ST_MakeLine(

ST_MakePoint(180, 90, Extract('year' FROM Now() - interval '74 
years')/100000), 

ST_MakePoint(-180, -90, Extract('year' FROM Now() - interval '75 
years')/100000))

ORDER BY loc_age <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;
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Looking at the execution plan we 
can see that all is good
Limit  (cost=0.41..8.43 rows=1 width=136) (actual time=15.294..16.082 
rows=10 loops=1)

->  Index Scan using users_loc_age_gix on users  (cost=0.41..8.43 rows=1 
width=136) (actual time=14.685..14.948 rows=10 loops=1)

Index Cond: (loc_age &&& 'XXX'::geometry)

Order By: (loc_age <<->> 'XXX'::geometry)

Planning time: 0.332 ms

Execution time: 19.053 ms
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Looking at the result we see that 
something is wrong

UserID Age

6827677 74 years 11 mons 7 days

1281456 75 years 15 days

1269119 73 years 7 mons 27 days

5791734 73 years 7 mons 8 days

3875002 74 years 7 mons 14 days

6373179 73 years 5 mons 8 days

3727434 74 years 7 mons 21 days

5214330 74 years 10 days

3127049 74 years 8 mons 22 days

6390900 74 years 21 days
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Solution: Keep the non-geometry 
where statement
SELECT * FROM users 

WHERE age(birthdate) BETWEEN '74 years' AND '75 years'

AND loc_age &&& 

ST_MakeLine(

ST_MakePoint(180, 90, Extract('year' FROM Now() - interval '74 
years')/100000), 

ST_MakePoint(-180, -90, Extract('year' FROM Now() - interval '75 
years')/100000))

ORDER BY loc_age <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;
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Finally we look at Activity

1. Popularity

2. Age

3. Activity <--
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Order by last active time

WITH x AS (SELECT * FROM users

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 100)

SELECT * FROM x 

ORDER BY 

ST_Distance(location::geography, ST_MakePoint(103.8, 1.3)) 

* Extract(Now() - active_time)

LIMIT 10;
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What is the difference between 
time, popularity and age?
• Popularity is bounded, a users popularity can range 

between 0 and 1.

• Age is also bounded, and static. All our users are 
between 16 and 100 years old and their birthdate 
never change. 

• Time increase infinitely in one direction.
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Adding time to the geo column

ALTER TABLE users ADD COLUMN loc_active geometry;

UPDATE users

SET loc_active = ST_MakePoint(ST_X(location), ST_Y(location), 

Extract('epoch' FROM active_time) / 60 / 10000);

CREATE INDEX users_loc_active_gix

ON users USING GIST (loc_active gist_geometry_ops_nd);
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Select with time becomes

SELECT * FROM users 

ORDER BY loc_active <<->> ST_MakePoint(103.8, 1.3,

Extract('epoch' FROM Now()) / 60 / 10000)

LIMIT 10;
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What we talked about so far

1. Location X and Y

2. Popularity

3. Age

4. Activity
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Adding a 4th dimension

ALTER TABLE users ADD COLUMN loc_pop_age geometry;

UPDATE users

SET loc_pop_age = 

ST_MakePoint(ST_X(location), ST_Y(location), 

0.01 * 1 / (popularity+1),

Extract('year' FROM birthdate)/100000);

CREATE INDEX users_loc_pop_age_gix

ON users USING GIST (loc_pop_age gist_geometry_ops_nd);
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Adding a 4th dimension - Query

SELECT * FROM users 

WHERE loc_pop_age &&& 

ST_MakeLine(

ST_MakePoint(180, 90, -100, Extract('year' FROM Now() - interval 
'20 years')/100000),

ST_MakePoint(-180, -90, 100, Extract('year' FROM Now() - interval 
'30 years')/100000)) 

ORDER BY loc_pop_age <<->> ST_MakePoint(103.8, 1.3, 0, 0)

LIMIT 10;
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Query runtimes 2D vs 3D vs 4D
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Query times did not impress. 
What about index sizes?
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Conclusion

1. Popularity
• Pro: Improves ranking?
• Con: Makes it more difficult to reason about the ranking formula
• Con: Makes the query slower

2. Age
• Pro: Fixes query time of outlier queries
• Con: Make the average query time longer
• Con: Have to take special care to not disturb the normal ranking

3. Time
• Pro: Improves ranking?
• Con: Much more difficult to reason about the ranking formula
• Con: Makes the query slower
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Conclusion

Its more difficult to use the 3rd and 4th dimension 
than what a quick glance reveals. Test extensively!
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Questions?
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Thank You!
blomqvist@tantanapp.com
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