
(Ab)using 4D indexing in
PostGIS 2.2 with

PostgreSQL 9.5 to give you
the perfect match

Victor Blomqvist

vb@viblo.se

blomqvist@tantanapp.com

Tantan (探探)

March 19, pgDay Asia 2016 in Singapore

1tantanapp.com

mailto:vb@viblo.se
mailto:blomqvist@tantanapp.com

At Tantan we use PostgreSQL &
PostGIS for everything!

2tantanapp.com

Suggesting users is difficult

• How should we rank them?

• How can it execute quickly?
(At Tantan we need to do 1000 ranking queries per
second at peak!)

tantanapp.com 3

The exciting new feature in
PostGIS is this:

<<->>

tantanapp.com 4

Today I will show how to take
advantage of the 4th dimension!
1. Use double the amount of dimensions from 2

2. …

3. Profit!

tantanapp.com 5

We will look at 3 different properties
to help our suggestion SELECT

1. Popularity

2. Age

3. Activity

tantanapp.com 6

Let’s begin with 2 dimensions

tantanapp.com 7

Y
(Latitude)

X
(Longitude)

Table and index

CREATE TABLE users (

id serial PRIMARY KEY,

birthdate date,

location geometry,

active_time timestamp,

popularity double precision

);

CREATE INDEX users_location_gix

ON users USING GIST (location);

tantanapp.com 8

Selecting

SELECT * FROM users

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

/* Singapore */

LIMIT 10;

tantanapp.com 9

Lets look at our first case

1. Popularity <--

2. Age

3. Activity

tantanapp.com 10

The popularity formula

Popularity = likes / (likes + dislikes)

tantanapp.com 11

Order by location and popularity

WITH x AS (SELECT * FROM users

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 100)

SELECT * FROM x

ORDER BY

ST_Distance(location::geography, ST_MakePoint(103.8, 1.3))

* 1 / (popularity+1)

LIMIT 10;

tantanapp.com 12

Picture of x-y-z axis

tantanapp.com 13

X
(Longitude)

Y
(Latitude)

Z
(Popularity)

Adding a 3rd dimension!

ALTER TABLE users ADD COLUMN loc_pop geometry;

UPDATE users

SET loc_pop = ST_makepoint(ST_X(location),

ST_Y(location), 0.01 * 1 / (popularity+1));

CREATE INDEX users_loc_pop_gix

ON users USING GIST (loc_pop gist_geometry_ops_nd);

tantanapp.com 14

To use our new 3D index we need
to use the new <<->> operator

<<->> — Returns the n-D distance between the centroids
of A and B bounding boxes.

This operand will make use of n-D GiST indexes that may
be available on the geometries. It is different from other
operators that use spatial indexes in that the spatial
index is only used when the operator is in the ORDER BY
clause.

* http://postgis.net/docs/manual-2.2/geometry_distance_centroid_nd.html

tantanapp.com 15

With <<->> our query becomes

SELECT * FROM users

ORDER BY loc_pop <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;

tantanapp.com 16

Second case

1. Popularity

2. Age <--

3. Activity

tantanapp.com 17

A quick review of our table:

CREATE TABLE users (

id serial PRIMARY KEY,

birthdate date,

location geometry,

active_time timestamp,

popularity double precision

);

tantanapp.com 18

Selecting with age filter

SELECT * FROM users

WHERE age(birthdate) between '20 years' AND '30 years'

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 10;

tantanapp.com 19

A very selective user might only
want to look at 74 year olds
SELECT * FROM users

WHERE age(birthdate) between '74 years' AND '75 years'

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 10;

tantanapp.com 20

Explain analyze of the query

Limit (cost=0.41..62011.93 rows=10 width=96) (actual
time=49.456..551.955 rows=10 loops=1)

-> Index Scan using users_location_gix on users
(cost=0.41..1103805.51 rows=178 width=96) (actual time=49.398..546.631
rows=10 loops=1)

Order By: (location <-> 'XXX'::geometry)

Filter: ((birthdate >= (now() - '75 years'::interval)) AND (birthdate <=
(now() - '74 years'::interval)))

Rows Removed by Filter: 192609

Planning time: 0.157 ms

Execution time: 553.151 ms

tantanapp.com 21

This is a real
problem

tantanapp.com 22

Possible solutions?

• Prevent searches of
restricted ages

• Add a distance
restriction

• Add age to the geo index

tantanapp.com 23

Adding age to the geo index

ALTER TABLE users ADD COLUMN loc_age geometry;

UPDATE users

SET loc_age = ST_makepoint(ST_X(location), ST_Y(location),
Extract('year' FROM birthdate)/100000);

CREATE INDEX users_loc_age_gix ON users USING GIST (loc_age
gist_geometry_ops_nd);

tantanapp.com 24

Updated query

SELECT * FROM users

WHERE loc_age &&&

ST_MakeLine(

ST_MakePoint(180, 90, Extract('year' FROM Now() - interval '74
years')/100000),

ST_MakePoint(-180, -90, Extract('year' FROM Now() - interval '75
years')/100000))

ORDER BY loc_age <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;

tantanapp.com 25

Looking at the execution plan we
can see that all is good
Limit (cost=0.41..8.43 rows=1 width=136) (actual time=15.294..16.082
rows=10 loops=1)

-> Index Scan using users_loc_age_gix on users (cost=0.41..8.43 rows=1
width=136) (actual time=14.685..14.948 rows=10 loops=1)

Index Cond: (loc_age &&& 'XXX'::geometry)

Order By: (loc_age <<->> 'XXX'::geometry)

Planning time: 0.332 ms

Execution time: 19.053 ms

tantanapp.com 26

Looking at the result we see that
something is wrong

UserID Age

6827677 74 years 11 mons 7 days

1281456 75 years 15 days

1269119 73 years 7 mons 27 days

5791734 73 years 7 mons 8 days

3875002 74 years 7 mons 14 days

6373179 73 years 5 mons 8 days

3727434 74 years 7 mons 21 days

5214330 74 years 10 days

3127049 74 years 8 mons 22 days

6390900 74 years 21 days

tantanapp.com 27

Solution: Keep the non-geometry
where statement
SELECT * FROM users

WHERE age(birthdate) BETWEEN '74 years' AND '75 years'

AND loc_age &&&

ST_MakeLine(

ST_MakePoint(180, 90, Extract('year' FROM Now() - interval '74
years')/100000),

ST_MakePoint(-180, -90, Extract('year' FROM Now() - interval '75
years')/100000))

ORDER BY loc_age <<->> ST_MakePoint(103.8, 1.3, 0)

LIMIT 10;

tantanapp.com 28

Finally we look at Activity

1. Popularity

2. Age

3. Activity <--

tantanapp.com 29

Order by last active time

WITH x AS (SELECT * FROM users

ORDER BY location <-> ST_MakePoint(103.8, 1.3)

LIMIT 100)

SELECT * FROM x

ORDER BY

ST_Distance(location::geography, ST_MakePoint(103.8, 1.3))

* Extract(Now() - active_time)

LIMIT 10;

tantanapp.com 30

What is the difference between
time, popularity and age?
• Popularity is bounded, a users popularity can range

between 0 and 1.

• Age is also bounded, and static. All our users are
between 16 and 100 years old and their birthdate
never change.

• Time increase infinitely in one direction.

tantanapp.com 31

Adding time to the geo column

ALTER TABLE users ADD COLUMN loc_active geometry;

UPDATE users

SET loc_active = ST_MakePoint(ST_X(location), ST_Y(location),

Extract('epoch' FROM active_time) / 60 / 10000);

CREATE INDEX users_loc_active_gix

ON users USING GIST (loc_active gist_geometry_ops_nd);

tantanapp.com 32

Select with time becomes

SELECT * FROM users

ORDER BY loc_active <<->> ST_MakePoint(103.8, 1.3,

Extract('epoch' FROM Now()) / 60 / 10000)

LIMIT 10;

tantanapp.com 33

What we talked about so far

1. Location X and Y

2. Popularity

3. Age

4. Activity

tantanapp.com 34

Adding a 4th dimension

ALTER TABLE users ADD COLUMN loc_pop_age geometry;

UPDATE users

SET loc_pop_age =

ST_MakePoint(ST_X(location), ST_Y(location),

0.01 * 1 / (popularity+1),

Extract('year' FROM birthdate)/100000);

CREATE INDEX users_loc_pop_age_gix

ON users USING GIST (loc_pop_age gist_geometry_ops_nd);

tantanapp.com 35

Adding a 4th dimension - Query

SELECT * FROM users

WHERE loc_pop_age &&&

ST_MakeLine(

ST_MakePoint(180, 90, -100, Extract('year' FROM Now() - interval
'20 years')/100000),

ST_MakePoint(-180, -90, 100, Extract('year' FROM Now() - interval
'30 years')/100000))

ORDER BY loc_pop_age <<->> ST_MakePoint(103.8, 1.3, 0, 0)

LIMIT 10;

tantanapp.com 36

Query runtimes 2D vs 3D vs 4D

tantanapp.com 37

0 10 20 30 40 50

Location

Location + popularity

Location + age (20-30)

Location + age (74)

Location + activity

Location + pop + age (4D)

3D/4D index (ms) 2D index (ms)

Query times did not impress.
What about index sizes?

tantanapp.com 38

0 50 100 150 200

users_pkey

users_location_gix

users_loc_pop_gix

users_loc_pop_age_gix

users_loc_age_gix

users_loc_active_gix

Size bloated (MB) Size fresh(MB)

Conclusion

1. Popularity
• Pro: Improves ranking?
• Con: Makes it more difficult to reason about the ranking formula
• Con: Makes the query slower

2. Age
• Pro: Fixes query time of outlier queries
• Con: Make the average query time longer
• Con: Have to take special care to not disturb the normal ranking

3. Time
• Pro: Improves ranking?
• Con: Much more difficult to reason about the ranking formula
• Con: Makes the query slower

tantanapp.com 39

Conclusion

Its more difficult to use the 3rd and 4th dimension
than what a quick glance reveals. Test extensively!

tantanapp.com 40

tantanapp.com 41

Questions?

tantanapp.com 42

Thank You!
blomqvist@tantanapp.com

vb@viblo.se

mailto:Blomqvist@tantanapp.com
mailto:vb@viblo.se

